Numerous people around the world are affected by bedriddenness – whether due to illness, accident or old age. Since they are often unable to move or turn on their own, bedsores can become very painful. The aim is to prevent bedsores in the future with materials whose shape and mechanical properties can be programmed to change at any point. For example, the hardness and stiffness of mattresses made from programmable materials could be adjusted in any area at the touch of a button. In addition, the base deforms independently in such a way that a high pressure at one point is distributed over a larger area. The bed automatically becomes softer and more elastic where it presses. In addition, caregivers can specifically adjust an ergonomic lying position to suit the patient.
Material Plus Microstructuring
Materials for applications that require a targeted change in stiffness or shape are being developed by researchers at Fraunhofer CPM, which is characterized by six core institutes and aims to design and produce programmable materials. But how can materials be programmed in the first place? »We basically have two adjusting screws: the base material – thermoplastics in the case of mattresses, and metallic alloys, including shape memory alloys, for other applications – and, in particular, the microstructure,« explains Dr. Heiko Andrä, topic focus spokesperson at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the core institutes of Fraunhofer CPM. »The microstructure of the so-called metamaterials is composed of individual cells, which in turn consist of structural elements such as small beams and thin shells.« While the size of the individual cells and their structural elements varies randomly in conventional cellular materials such as foams, it is also variable in programmable materials, but precisely determined – in other words, programmed.