A forecasting model boosts these batteries’ efficiency. The model factors the weather forecast into its predictive equation. First, it determines how much energy the photovoltaic systems are expected to produce in the hours ahead, and how much heat is likely to be consumed. Then it applies the results of these calculations to regulate storage. For example, the PV systems run at less than full capacity when the morning sky is hazy. If the weather is expected to clear up by the afternoon so that the systems’ output would have to be throttled, the energy management system will not start storing power in the morning, instead holding off until later to charge batteries. In other words, rather than following the standard practice of charging the batteries with the first kilowatt hour of electricity produced during the day, this system waits until more energy is on tap. The batteries will still be fully charged by evening, but without any solar power going to waste.
The Electromobility Module
Electric cars’ batteries also need charging, and the best time to do that is when PV systems are generating plenty of electricity. However, an empty battery is not a welcome sight for drivers who need to run urgent errands. »Residents can determine the minimum charging levels for their cars simply by clicking in an app,« says Klein. Fifty percent may be enough for someone who only needs the car for a quick grocery run. The system recharges the battery to the level specified by the owner when the car is plugged in. If necessary, it will fall back on electricity from the public grid. The system will continue charging beyond this level if it is sunny outside. If not, it will wait until energy production picks up again to top off the battery. The benefits are twofold. For one, this solar self-consumption brings down the electricity bill. For the other, every watt of surplus energy that is routed to local batteries rather than exported lightens the public grid’s power load.