The Fluid Dynamical Process Design group applies mathematical modelling, simulation and optimization to industrial processes which are driven by fluid dynamics. The key expertise lies in the combination of existing tools, like ANSYS Fluent or OpenFOAM, with highly customized models. Through this interplay and the ability to develop application-specific models it becomes possible to represent complex industrial processes on the computer and thus generate a profound understanding. The models are further used in combination with optimization methods for the improvement of the processes.
The competence in the field of flow dynamics covers the entire range of phenomena, from the high turbulent airflow to the flow of non-Newtonian fluids, like polymer melts. Models for the interaction between flow and fine structures - such as particles, fibers or films - are used to simulate cooling, heating or drying processes. Filters and other micro-geometries can be integrated into the simulation of the overall process via a multi-scale approach. Optimization methods are used to determine the best process parameters and shape optimization is used to design flow-optimal components.