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1 Description

At the base of each financial market lies the valuation of its instruments. Until the
financial crisis of 2007-2008, the single-curve approach and its bootstrapping technique
were used to value linear interest rate derivatives. Due to lessons learnt during the crisis,
the valuation process for derivatives has been fundamentally changed. The aim of this
white paper is to explain the foundation of the single-curve approach, why and how
the methodology has been changed to the multi-curve approach and how to handle the
computations if the collateral is being held in another currency. Moreover, we provide a
brief overview of how interest rate models, which are used to price non-linear interest
rate derivatives, have been extended after the crisis. Finally, we take a look at the history
and future of Libor, which will be phased out by the end of 2021.

In particular, this document is an excellent starting point for someone who has had little
or no prior exposure to this very relevant topic. At the time of publication, we were not
aware of any similarly comprehensive resource. We intend to fill this gap by explaining
in detail the fundamental concepts and by providing valuable background information.
The last chapter about Libor can be studied independently from the remaining parts of
this document.

Description
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2 Introduction: Interest Rate Derivatives, Libor and Zero-Bond
Curves

»Financial market« is a generic term for markets where financial instruments and com-
modities are traded. Financial instruments are monetary contracts between two or
more parties. A derivative is a financial instrument that derives its value from the perfor-
mance of one or more underlying entities. For instance, this set of entities can consist of
assets (such as stocks, bonds or commodities), indexes or interest rates and is itself called
»underlying«. Derivatives are either traded on an exchange, a centralised market where
transactions are standardised and regulated, or on an over-the-counter (OTC) market,
a decentralised market where transactions are not standardised and less regulated. OTC
markets are sometimes also called »off-exchange markets«. The OTC derivatives market
grew exponentially from 1980 through 2000 and is now the largest market for deriva-
tives. The gross market value of outstanding OTC derivatives contracts was USD 15 trillon
in 2016, which corresponds to one fifth of that year's gross world product, see [3] and
[36]. As we will learn later in Section 4.1.1, additional regulations were imposed upon
the OTC market due to its role during the financial crisis of 2007-2008.

We are especially interested in valuing derivatives whose underlying is an interest rate
or a set of different interest rates and call these derivatives interest rate derivatives
(IRDs). One of the most important forms of risk that financial market participants face is
interest rate risk. This risk can be reduced and even eliminated entirely with the help of
IRDs. Furthermore, IRDs are also used to speculate on the movement of interest rates and
are mainly traded OTC. Around 67% of the global OTC derivatives market value arises
from OTC traded IRDs, see [3]. IRDs can be divided into two subclasses:

m Linear IRDs are those whose payoff is linearly related to their underlying interest rate.
Examples of this class are forward rate agreements, futures and interest rate swaps.'

Until the financial crisis, the single-curve approach was used to price these IRDs. In
Chapter 3, we will describe how it works, what the distinctive assumptions are and
why they are flawed. Afterwards, in Chapter 4, we will discuss the multi-curve ap-
proach, which is now market standard for pricing linear IRDs. We will then have a
brief look at the multi-currency case in Chapter 5.

m Non-linear IRDs are all the remaining instruments, i.e. those whose payoff evolves
non-linearly with the value of the underlying. Basic examples are caps, floors and
swaptions. However, this family of IRDs is very large and also includes very complex
derivatives, such as autocaps, Bermudan swaptions, constant maturity swaps and zero
coupon swaptions.

We need interest rate models to price such IRDs, but they are not the focus of this
paper. Nevertheless, in Chapter 6 we will provide a brief summary of how existing
families of models were extended to the new framework due to the deeper market
understanding and name the most relevant publications. Additionally, we point out
links to results that were developed earlier in this paper.

Aim: We want to construct interest rate curves that enable us to price any linear
IRD of interest. For this purpose, we will use prices quoted on the market as input
factors to a technique called »bootstrapping«.

Remark. The London Interbank Offered Rate (Libor) is the trimmed average of inter-
est rates estimated by each of the leading banks in London that they would be charged

"Forward rate agreements and interest rate swaps will play a crucial role in this white paper and will be
introduced in more detail later on.
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if they had to borrow unsecured funds in reasonable market size from one another. Cur-
rently, it is calculated daily for five currencies (CHF, EUR, GBP, JPY, USD), each having
seven different tenors (1d, 1w, Tm, 2m, 3m, 6m, 12m). Hence, there exist in total 35
distinct Libor rates. We omit the specification of the currency when not needed and write
A-Libor for the Libor with tenor A. The banks contributing to Libor belong to the upper
part of the banks in terms of credit standing and were considered virtually risk-free prior
to the crisis. See Chapter 7 for more background information and for an explanation of
why Libor will be phased out by the end of 2021.

Remark. Similar reference rates set by the private sector are, for example, the Euro Inter-
bank Offered Rate (Euribor), the Singapore Interbank Offered Rate (Sibor) and the Tokyo
Interbank Offered Rate (Tibor). Everything we do is applicable to all interbank offered
rates. We refer solely to Libor due to the better readability and since this is an established
standard in the literature.

In the following, we assume that the considered IRDs only have one underlying interest
rate and that this rate is always Libor. Before we go into further details, we introduce
some basic definitions:

Definition 1. We consider a stochastic short rate model and denote the short rate
by r(s) at time point s. This rate is the continuously compounded and annualised interest
rate at which a market participant can borrow money for an infinitesimally short period
of time at s. The (stochastic) discount factor D(¢,T) between two time instants ¢ and
T is the amount of money at time ¢ that is »equivalent« to one unit of money payable at

time T and is given by
T
D(t,T) = exp <—/ r(s)ds) .
t

Just like exchange rates can be used to convert cash being held in different currencies
into one single currency, discount factors can be interpreted as special exchange rates
which convert cash flows that are received across time into another »single currency,
namely into the present value of these future cash flows. Let us assume we know today
(t = 0) that we will receive X units of money in one year (' = 1). The present value
of this future cash flow can then be calculated as D(0, 1) - X. For obtaining the present
value in the case that we have several future cash flows, we just take the sum of the
respective present values.

Definition 2. A zero-coupon bond with maturity 7' (T-bond) is a riskless contract that
guarantees its holder the payment of one unit of money at time T with no intermediate
payments. The contract value at time ¢ < T is denoted by P(¢,T). Zero-coupon bonds
are sometimes also called »discount bonds«.

Note that P(T,T) = 1 and if interest rates are positive we have fort < T < T’
P(t,T)> P(t,T') .

For the valuation of linear IRDs we will need the prices of different zero-coupon bonds,
since it can be shown that

where the expectation is taken with respect to the risk neutral pricing measure and the
filtration F;, which encodes the market information available up to time ¢, see also
Section 4.1.2. Due to this crucial relation of discount factors and zero-coupon bonds, we
sometimes use expressions such as »we discount with P(¢,T)«. In conclusion, we are
interested in the following curve:

Definition 3. The zero-bond curve at time ¢, with ¢ < T, is given by the mapping
T— P(t,T).

This curve is sometimes also called »discount curve« or »term structure curvex.

Introduction:
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Using the bootstrapping technique, which will be described in the next chapter, we
first obtain a finite number of the zero-bond curve’s values from some given input data.
Roughly speaking, in a bootstrap calculation we determine a curve C : T — C(T) iter-
atively, where we get the unknown point C(T;) at T; by a calculation that depends on
previous points of the curve, {C(T}) : j < i}. Afterwards, we use this finite number of
values to generate the rest of the curve via inter- and/or extrapolation techniques. So,
essentially, »bootstrapping« refers to forward substitution in the context of zero-bond
curve construction.

Remark. We want to stress that when we use the term »bootstrapping«, we do not refer
to the statistical method, let alone to any of its many other meanings. Usually, bootstrap-
ping refers to a self-starting process that is supposed to proceed without external input.
It is, by the way, also the origin of the term »booting«, used for the process of starting
a computer by loading the basic software into the memory which will then take care of
loading other software as needed. Etymologically, the term appears to have originated in
the early 19th-century United States, particularly in the phrase »pull oneself over a fence
by one’s bootstraps«, to mean an absurdly impossible action.

Introduction:
Derivatives,
Bond Curves
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3 Single-Curve Approach: One Curve Is Not Enough

Assumption: All linear IRDs depend on only one zero-bond curve.
Procedure: With this single zero-bond curve we
1. calculate the forward rates with which we obtain the future cash flows and
2. discount these future cash flows

at the same time to price our linear IRD of interest.

For the construction of this curve it is allowed to use any set of liquid linear IRDs on
the market with increasing maturities and which have Libor as an underlying. Liquid
instruments are those with negligible bid-ask spread, which basically means that supply
meets demand, so that they can be converted into cash quickly and easily for full market
price. In particular, the allowed sets of instruments do not have to be homogeneous,
i.e. they can have different Libor indexes as underlying, such as 1m-Libor, 3m-Libor . ..

It is important to realise that:

m Until the financial crisis of 2007-2008, Libor was seen as a good proxy for the theo-
retical concept of the risk-free rate, which motivated its usage for discounting.

® The usage of the same curve to discount the cash flows is a modelling choice and not
a contractual obligation and thus is theoretically open to debate.

As we will see, these two points are crucial differences to the multi-curve approach,
which is the method recommended by leading experts in the field, see for instance [15],
where Henrad first proposed a different approach in 2007, and also [6], [25] and [27].

Nevertheless, we first start with the single-curve approach as it not only deepens our
general understanding by outlining the historic evolution, but also uses a bootstrapping
technigue that will be relevant for the multi-curve approach later on.

3.1 Single-Curve Bootstrapping

In the following, (¢, T') denotes the time period in years between time point ¢t and T
according to a specific day count convention. We assume the Actual/360 one, as Libor for
all currencies except GBP (there it is the Actual/365 one) is based on it and, in general, it
is the most prevalent day count convention for money market instruments with maturity
below one year. It is determined by the factor =i--Days(t, T), i.e. one year is assumed to

: 360
consist of 360 days, see [29].

Before we illustrate the bootstrapping procedure, we would like to introduce the concept
of a simply compounded spot rate L(t,T). By an arbitrage argument?, one unit of
currency at time 7' should be worth P(¢,T') units of currency at time ¢, see (1). Hence,
we want that the following equation holds:

1= P(t, T)(l +r(t,T) - L(t,T)), 2)

2An arbitrage opportunity is the possibility to make a riskless profit in a financial market without net invest-
ment of capital. The no-arbitrage principle states that a mathematical model of a financial market should
not allow any arbitrage possibilities.

Single-Curve Approach:
Curve Is Not Enough
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i.e. we assume that L(¢,T) is a riskless lending rate. This leads us to the following
definition:

Definition 4. The simply compounded spot rate at time ¢ for maturity T is defined
as

1—P(t,T)
7(t,T)-Pt,T) "
Important simply compounded spot rates are the market Libor rates, which motivates the
above notation L(¢,T).

L(t,T) = 3)

Definition 5. In a fixed for floating interest rate swap two parties periodically ex-
change interest rate payments on a given notional amount N. One party pays a fixed
rate whereas the other pays a floating rate. These instruments are particularly useful
for reducing or eliminating the exposure to interest rate risk. According to the market
conventions of a given currency the fixed payment schedule has standard periods, for
instance one year for EUR or six months for USD, see [29]. We call the sum of fixed
payments the fixed leg and the sum of the floating payments the floating leg.

Remark. In a general interest rate swap (IRS), each of the two parties has to pay either
a fixed or a floating interest rate on a given notional amount N to its counterparty. An
IRS is traded OTC and its notional amounts are never exchanged, as the term »notional«
suggests.3 The most common form of an IRS is a fixed for floating swap and the least
common form is a fixed for fixed swap. IRSs constitute with 60% the largest part of
the global OTC derivatives gross market value in 2017, see [3]. Consequently, they also
represent by far the largest part of all OTC traded IRDs.

Prior to the financial crisis of 2007-2008, we were, for example, provided with the rates
of Fig. 1 for bootstrapping the discount factors. So, in this case, Libor rates L(0,T), T €
{1m, 3m,6m, 12m} are used as input rates until 12 months and swap fixed rates S(0,T),
T € {2y,3y,...,30y,40y, 50y}, from 2 years to 50 years. As mentioned previously, any
set of liquid vanilla interest rate instruments on the market with increasing maturities
could be used, e.g. in addition to the ones above also mid-term futures or forward rate
agreements on 3m-Libor.

Index Type Duration
1 Libor rate 1 month
2 Libor rate 3 months
3 Libor rate 6 months
4 Libor rate 12 months
5 Swap fixed rate 2 years

6 Swap fixed rate 3 years
32 Swap fixed rate 29 years
33 Swap fixed rate 30 years
34 Swap fixed rate 40 years
35 Swap fixed rate 50 years

Clearly, the resulting bootstrapped curve is a curve, where the prices of the instruments
used as an input to the curve coincide with the prices that are calculated using this curve
when valuing these same instruments.

3Hence, it does not make too much sense to estimate the IRS market size and risk by adding up the notional
values of all outstanding IRSs. Unfortunately, this is still a common practice and even used in regulatory
calculations, see also [14].

Single-Curve Approach: One
Curve Is Not Enough

Fig. 1: Input rates for bootstrap-
ping prior to the financial crisis
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Using the bootstrapping technique, we are now going to extract N = 35 distinct grid
points of the zero-bond curve P(0,-) from the above N distinct rates. These grid points
will be the values P(0,T) with

T € {1m,3m,6m, 12m, 2y, 3y, . .., 30y, 40y, 50y} .

To this end, different calculations apply — one for T' < 1y, one for 1y < T' < 30y and one
for 30y < T

m ForT < 1y:

From equation (2) follows immediately that

1
PO, T) = .
0.7)=17 7(0,T)L(0,T)
Note that in the case of EUR and GBP Libor, the fixing date of Libor corresponds to
its value date, i.e. the rate is set on the same day that the banks contribute their
submissions. However, for all currencies other than EUR and GBP the value date will
fall two London business days after the fixing date, see [29]. If this subsequent date is

(@) not a market holiday, we have to consider the overnight rate ron for the first
day and the spot next rate rgn for the day after to get the exact bond prices, see
[20]. So in this case we would get

1

P(0,T) = .
0.7) =17 7(0,1d)ron + 7(1d, 2d)rsy + 7(2d, T)L(0, T)

(b) a market holiday, the value date will roll onto the next date which is a normal
business day both in London and in the principal financial centre of the relevant
currency.

®m For ly < T < 30y:

From one year onwards, we use swap fixed rates to calculate the bond prices. We
consider swap rates that are quoted annually and where the fixed rate is paid annu-
ally, too, as is the case in the EUR market, see [29]. The starting point is again an
equation: For instance, when T' = 2y we start with

1 = 5(0,2y)7(0, 1y) P(0, 1) + (T(ly, 24)5(0, 2y) + 1)P(0, 2) .

This treats the swap as a 2-year S(0, 2) fixed-rate bullet bond priced at par value of 1.
A bullet bond is a debt instrument whose entire principal value is paid all at once on
the maturity date, as opposed to amortizing the bond over its lifetime. It cannot be
redeemed prior to maturity.

All payments on this hypothetical bond prior to the maturity date — which is in this
case only one payment after one year — are multiplied by the corresponding bond
price. At maturity we discount the last payment and the repaid principal with the
unknown factor P(0,2y). Hence, we obtain

1 —5(0,2y)7(0, 1y) P(0, 1y)
1+ 7(1y,2y)S5(0,2y)

P(0,2y) =

To get P(0, 3y), we start from
1= 5(0,3y)7(0,1y) P(0, 1y) + S(0, 3y)7(1y, 2y) P(0, 2y)
+ (T(2y, 3y)S(0,3y) + 1) P(0,3y)

Single-Curve Approach:
Curve Is Not Enough

One
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andsoon ... So, in general we have

1-5(0,7) 'EDZ;?’T(JQ—l,TE)'f)(O,JQ)
1+ S(O, T) . T(Tn_l, Tn)

P(0,T)=P(0,T,) = ; (4)
where we write T}, to denote that the corresponding swap has a duration of n years
and we put Ty := 0. It is possible to solve the above equations for the different T' at
once using matrix computations, as illustrated in [9].

Once again, we have to pay attention to different market conventions: For example,
in the USD market the fixed rate is payed semi-annually. However, we do not have,
for instance, a 1y6bm swap fixed rate to calculate P(0,1y6m). The simple solution
is to interpolate the missing swap fixed rates with a suitable interpolation technique,
see the next remark, and to apply a similar procedure as described for the next case,
30y < T, in more detail. The used interpolated rates are also referred to as »synthetic
rates« in the literature.

m For30y < T

The data for long durations is usually sparse. Therefore we use an iterative approach
for calculating the bond prices, where we obtain a value P;(0,T) in each iteration. Let
T =40 and for ¢ = 1 we set

Py (0,40) = <1+S'1((),4()))40'

We proceed as follows:

1. Derive the bond prices for the years 31, ..., 39 using log-linear interpolation, or any
other suitable interpolation technique, see the next remark, between P(0, 30) and
P;(0,40). We assume for now that the obtained values are the true ones.

2. Calculate P;41(0,40) as in equation (4) with the obtained values of the previous
step.

This routine is repeated until for the k-th repetition the obtained improvement is neg-
ligibly small, e.g.
| Py1(0,40) — Py (0,40)] < 1078 .

For the following years, the same routine is applied.

After obtaining the bond prices at the given time points we can interpolate between
them to get the entire zero-bond curve.*

Remark. Usually, the interpolation is done on the logarithm of the bond prices using
one or the other interpolation method. In [30], the usage of different interpolation
methods for curve construction is discussed in detail. The authors provide some warning
flags and stress that natural cubic splines possess the non-locality property, since it uses
information from three time points. Non-locality means that if the input value at time
point t; is changed, the interval (t;—;,t;+.), wWhere the values of the curve change, is
rather large. The method choice is always subjective and needs to be decided on a case
by case basis.

As explained previously, in the single-curve approach we only use the information of this
unique zero-bond curve to price any linear IRD in a given currency.

4See Section 4.3.2 for an alternative, the so-called »best fit approach«, which is being used by most central
banks.

Single-Curve Approach:
Curve Is Not Enough

One
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3.2 The Single-Curve Approach in Light of the Financial Crisis

In the following, we illustrate in the first proof of Lemma 3.1 how the usage of this one
curve works and provide a brief explanation why this procedure is not recommendable.
This motivates the usage of the multi-curve approach, which will be covered in Chapter 4.

Definition 6.

m A standard forward rate agreement (FRA) is a contract involving three time in-
stants: (i) the current time ¢, (i) the expiry time T;_; and (iii) the maturity time T3, with
t<T;_1 <T;

m The contract gives its holder an interest rate payment for the period between T;_;
and T; at maturity T;, which corresponds to the difference between the fixed rate
L(t,T;—1,T;) and the floating spot rate L(T;_1,T;).

W L(¢t,T;—1,T;) is the risk-free rate for the time interval [T;_1, T;] determined at time ¢
and we call it the simply compounded forward rate or the FRA rate.

Lemma 3.1

Single-Curve Approach:
Curve Is Not Enough

One

Using the single-curve approach we get

B 1 P(t,Ti—1)
L(t, T, T3) = (Ti—1, T3 ( P(t,T,) 1)- (5)

To show this we provide two proofs. The first one illustrates how we get the above
expression and the second one uses a replication argument to which we will come back
later.

Proof 1. Here we follow the proof of [7]. Let N denote the contract nominal value and
K the simply compounded forward rate with expiry time T;_; and maturity time T}, i.e.
K = L(t,T;_1,T;). At time T; one receives 7(T;_1,T;) KN units of currency and pays
7(T;—1,T;)L(T;—1,T;) N. The payoff of the contract at time T; is therefore

FRA( T30, Ty, N) = N7 (Ti1, T) (K = LT3, ) )

3 (6)
:N TTZ‘, 7TiK—7+1 .

(oo~ gy 1)

Because of the assumption that we are using the single-curve approach we can discount
the cash flows with the same curve. Note that the amount 1/P(T;-1,T;) at time T; is
worth one unit of money at time T;_;. One unit of money at time T;_ is in turn equal
to an amount of P(t,T;_;) at time ¢. On the other hand, the amount 7(T;_1,T;) K + 1
from (6) at time T; is worth P(¢,T;)7(T;-1,T;) K + P(t,T;) at time t. The total value of
the forward rate agreement at time ¢ is

N(P(t, T)7(Ti1, T)K — P(t,T;_y) + P(t, Ti)) .

If we equate this to zero for no-arbitrage reasons and solve for K we obtain the above
statement. O

Proof 2. At first, we construct two separate strategies at different time points:

Fraunhofer ITWM Progressing from Single- to Multi-Curve Bootstrapping
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Time FRA-Strategy Bond-Strategy

Single-Curve Approach: One
t  ebuyone FRA e sell one T;_,-bond Curve Is Not Enough
* buy 7P}(}(’E£;) T;-bonds
cash flow 0 cash flow 0
T,—1 einvest1at L(T;—1,T;) e pay back T;_;-bond
cash flow —1 cash flow —1
T, e receive from investment: e receive from T;-bonds:
1+ LTG0, 1) - 7(Ti1, T) S
e receive from FRA:
(L(t7 Ti—17 TZ) - L(ﬂ—la E)) . T(E—17 7_'1)
cash flow 1+ L(¢t,T;_1,T;) - 7(T;—1,T3) cash flow %
Due to the no-arbitrage assumption we get
P(taﬂ—l)
L+ LTy, T) - 7(Ti—1, T}) = ——2—=2/
+ ( Y 1 ) T( 1 ) P(t7 Tz)
1 P(ta Tifl)
= Lt T,_1,T;) = —-1].
T ) = o T ( P(t,T;)
U
Remark. Using (3) and Lemma 3.1 it follows that the simply compounded spot rate is
equal to the simply compounded forward rate if t = T;_1, i.e.
Lt,T) = ———— 2" — L(t,t,T;) . 7
*T) T(t,T;) - P(t,T) ( ) 7
In the literature, the simply compounded spot rate L(t,T;) is sometimes defined as the
value of the simply compounded forward rate L(¢,T;_1,T;) with ¢ = T;_1. However,
we started with the simply compounded spot rate and derived the value of the simply
compounded forward rate in Lemma 3.1 because the proofs provide us with a deeper
understanding of the single-curve approach, as we will realise very soon.
At this point, we already introduce the concept of the net present value, which will be
covered in more detail in Section 4.1.2:
Definition 7. We define the net present value (NPV) at time ¢ of a financial transaction
with net cash flows® Cash(T;) at time points T3, i € {1,..., M}, by
M
NPV(t) := Y P(t,T;)E{[Cash(T})] , (®)
i=1
where Ei[-] denotes the expectation under the T;-forward measure associated with the
risk-free zero-coupon bond P(t, -) and the filtration F;.
Example 1. The NPV of a Libor swap’s floating leg at time ¢ is given by
M
NPV(t) = " P(t, ;) L(t, Ti—1, T)7(T;-1, T)
=1
>»Net cash flow« refers to the difference between cash inflows and cash outflows in a given period of time.
Accordingly, the »net present value« is the difference between the present value of cash inflows and the
present value of cash outflows in a given period of time.
Fraunhofer ITWM Progressing from Single- to Multi-Curve Bootstrapping 12|34



where Ty denotes the maturity date of the swap. Hence, it is given by simply summing Single-Curve Approach: One
up the values of the single floating payments discounted with the corresponding zero-  curve Is Not Enough '
coupon bond price, compare the paragraph after Definition 1.

Lemma 3.2

For the NPV of a Libor swap’s floating leg at time ¢ it holds

NPV(t) =1 — P(¢t,Tn) - )
Proof.
M
NPV(t) = Y P(t, T,)L(t, Ty, T)7(Tio1, T5)
=1
M

—~
=

5 P(t,Ti-1) 1)

B i=1 pen) ( P(t,T;)

P(t,T;—1) — P(t,T;)

I
iz
S

— P(t,Ty)

O

In particular, (9) shows that NPV(t) does not depend on the tenor structure of the swap.

Definition 8. A tenor basis swap is a floating for floating IRS. Typically floating cash
flows from two different Libor indices of the same currency are exchanged, e.g. 3m-Libor
vs. 6m-Libor cash flows, which we denote by 3m-6m-Libor tenor basis swap. A so-called
»tenor basis spread« s is added to the Libor index with the lower index to quote a tenor
basis spread with a fixed maturity at par.

Definition 9. An overnight (index) rate is usually computed as a weighted average of
overnight unsecured lending between large banks. Important examples are the effective
Federal Funds Rate (FFR) for USD, the Euro OverNight Index Average (EONIA) and the
Sterling OverNight Index Average (SONIA). In some countries, central banks publish a
target overnight rate to influence monetary policy, for instance in the US. In contrast to
Libor, it is based on actual transactions by definition.

Definition 10. An overnight indexed swap (OIS) is an interest rate swap where the
floating payment is calculated via an overnight rate. The fixed rate of the OIS is typically
an interest rate considered less risky than the corresponding Libor rate because it contains
lower counterparty risk. Please note that the term »OIS rate« refers to the fixed rate of
the OIS and not to the reference rate.

Remark. The Libor-OIS spread is seen as a measure for the health of banks since it
reflects what banks believe is the risk of default when lending to another bank. Prior to
2007, the spread between the two rates used to be as little as 0.01%. A widening of the
gap, as it was the case during the crisis, is a sign that the financial sector is stressed. In
early 2018, at the time of writing this document, it was close to 0.6% — its highest level
during the past ten years. However, the current spread is only observable in the US and
analysts claim that its increase is not critical and exists only due to effects of recent fiscal
policies.

Equations (5) and (9) imply that in the single-curve approach both Libor-OIS spreads and
tenor basis spreads are always equal to zero, which can be verified empirically. However,
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the financial crisis of 2007-2008 has shown that this is not the case, as Fig. 2 and 3
indicate. For further visualisations see also [26].

We make two decisive observations that motivate the usage of the multi-curve approach,
which will be introduced in the next chapter:

® |n the second proof of Lemma 3.1 the FRA has tenor Agpga = T; — T;_1, whereas the
bonds that are bought at time point ¢ have tenor Agongs = T; — t and therefore for

t # T;_1 we have
Arra # ABonds - (10)

m On the other hand we know since the crisis that financial instruments with a longer
tenor have larger liquidity and counterparty credit risks. These risks are defined from
the viewpoint of a specific market participant A as follows:

m Market liquidity risk is the risk that A will have difficulty selling an asset without
incurring a loss. It is typically indicated by an abnormally wide bid-ask spread. It can
be caused by A itself, if its position is large relative to the market, or exogenously
by a reduction of buyers in the marketplace. In the subprime mortgage crisis, which
initiated the financial crisis of 2007-2008, rapid endorsement and later abandon-
ment of complicated structured financial instruments such as collateralised debt
obligations (CDOs) lead to an immense drop in market prices and thereby to a loss
of liquidity. Market liquidity risk is positively correlated to funding liquidity risk.

® Funding liquidity risk is the risk that A will become unable to settle its obligations
with immediacy over a specific time horizon and, as a result, will have to liquidate
a position at a loss that it would keep otherwise. In the run up to the financial
crisis, many banks were engaging in funding strategies that heavily relied on short-
term funding thus significantly increasing their exposure to funding liquidity risk,
see [21]. When banks such as Bear Stearns and Lehman Brothers started to look

Single-Curve Approach:
Curve Is Not Enough

One

Fig. 2: 3m-Libor-OIS spread (1y);

source: Bloomberg

Fig. 3: 3m-Libor vs. 6m-Libor
tenor basis spread (5y); source:

Bloomberg
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vulnerable, their clients risked losing capital during a bankruptcy and they started .

. . . . A ingle-Curve Approach: One
to withdraw money and unwind positions, which lead to a bank run. This in turn  cyrve Is Not Enough
increased market illiquidity with bid-ask spreads widening and as a consequence
prices dropped.

m Counterparty (credit) risk or default risk, is the risk that a financial loss will be
incurred if one of A's counterparties does not fulfil its contractual obligations in a
timely manner. For instance, when Lehman Brothers filed for bankruptcy it was a
counterparty to 930,000 derivative transactions which represented approximately
5% of global derivative transactions according to [18].

Since financial instruments with a longer tenor have larger liquidity and counterparty
credit risks, it makes no sense that the NPV of a Libor swap’s floating leg at time ¢ does
not depend on the tenor of the swap. However, this is being implied by Lemma 3.2.

One way to deal with the risk inconsistency mentioned in the second observation is
to model these risks explicitly, so that the different rates become compatible with one
another. Another way to tackle the problem is to segment market rates according to
their tenor.

The second approach is suggested by Morini in [27], where he argues that an IRD with
tenor A should only be replicated with IRDs of the same tenor A. Therefore, he implicitly
does not recommend the procedure in the second proof of Lemma 3.1, as there we have
in general Argra # ABondgs, see (10).

Conclusion: The need to consider liquidity and counterparty credit risks when pric-
ing IRDs is one of the key insights of the financial crisis of 2007-2008. This insight
constitutes the decisive turning point of the pricing approach for IRDs.
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4 Multi-Curve Approach: One Discount Curve and Distinct
Forward Curves

The underlying idea of the multi-curve approach is to segment market rates according
to their tenor. Thereby, we overcome the risk inconsistency discussed at the end of the
last section. Before we illustrate this concept with some examples in Section 4.2, we first
provide some historical and theoretical background to motivate and specify important
details.

4.1 Background
4.1.1 Historical Background: New Regulations and the Rise of OIS

After the crisis, many regulatory steps were taken in order to address the solvency and
liquidity problems that arose during the crisis. Important regulations are the Dodd-Frank
Act and Basel lll, which include provisions that tighten bank capital requirements, intro-
duce leverage ratios and establish liquidity requirements.

Similarly, there has also been a higher attention on the counterparty credit risk. The
following two key instruments attempt to reduce this risk:

m Collateral agreements: A collateral agreement is an additional contract to a main
contract where the terms for the exchange of the collateral as a security are specified.
There is a wide range of eligible collaterals which goes from cash to government or
corporate bonds and more rarely bullions. If the NPV of the main contract is positive
for A and exceeds a certain threshold by X, party A receives the collateral with value
X from party B. As long as B is not in default it remains the owner of the collateral
from an economic point of view and A needs to pass on coupon payments, dividends
and any other cash flows to B. If the difference between the NPV and the value of the
collateral position is in excess of the Minimum Transfer Amount (MTA), extra collateral
needs to be posted. Collateralised transactions pose less counterparty risk because
the collateral can be used to recoup any losses.

m Central (clearing) counterparty (CCP): In the aftermath of the crisis, authorities
tried to push derivatives markets towards collateralisation of OTC transactions. The
Dodd-Frank Act and the European Market Infrastructure Regulation (EMIR) intend to
mitigate counterparty credit risk through the creation of CCPs. A CCP is a financial
institution that interposes itself between counterparties of contracts, becoming the
buyer to every seller and the seller to every buyer. It provides greater transparency of
the risks, reduced processing costs and established processes in case of a member’s
default, see [34]. The most important aspect of central clearing is the multilateral
netting of transactions between market participants, which simplifies outstanding
exposures compared to a complex web of bilateral trades.

We illustrate this effect with the simplest possible example: We have three market
participants, A, B and C. A has to post a collateral of Y to B, B has to post a
collateral of Y to C and C has to post a collateral of Y to A. If we consider the exact
same situation only with a central counterparty in place, which is allowed to apply
multilateral netting, then no party has to post a collateral any more. This is the case,
since each of the three parties posts and receives the same amount of collateral.

However, one should not forget that CCPs cannot fully eliminate counterparty credit
risk. Furthermore, they concentrate risk, their probability of default is positive and they
can be sources of financial shocks if they are not properly managed.

Multi-Curve Approach:

One

Discount Curve and Distinct

Forward Curves
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For transactions that are not centrally cleared by a CCP, regulators also impose the inclu-
sion of a Credit Support Annex (CSA), a document where the collateralisation terms
and conditions are determined in detail. According to the International Swaps and
Derivatives Association (ISDA), cash represents around 77% of collateral received and
around 78% of collateral delivered against non-cleared derivatives in 2014, see [17]. The
collateral rate which is being paid on cash collateral is also the effective funding rate
for the derivative, as shown in [8]. This means that the appropriate rate to discount cash
flows when valuing a collateralised trade corresponds to the collateral rate, which is in
most cases an overnight rate. For instance, in the ISDA CSA for OTC derivative transac-
tions, the collateral rate is usually determined as the OIS rate, i.e. the fixed rate of the
OIS. Hence, we assume in the sequel that the collateral rate is the OIS rate.

OIS is the most prevalent choice amongst collateral rates because it is seen as the best
estimate of the theoretical concept of the risk-free rate. A good approximation of the
risk-free rate is desirable, since the collateral has effectively eliminated counterparty risk.
As mentioned before, until the financial crisis Libor was also assumed to be a good such
estimate, but during the crisis the Libor-OIS spread spiked to an all-time high of 3.64%.
That Libor cannot be assumed to be risk-free was also discussed in the media in the
aftermath of the Libor manipulation scandal of 2011, see [4] and Chapter 7. Whereas
the overnight rates on which OIS are based are averages of actual transactions, Libor
often just reflects the opinion of several banks at which rate other banks would let them
borrow money, see Chapter 7.

4.1.2 Theoretical Background

Definition 4.1

Multi-Curve Approach: One
Discount Curve and Distinct
Forward Curves

With the risk neutral pricing approach, see [23], we obtain the net present value
(NPV) at time ¢ of a financial transaction with net cash flows Cash(T;) at time points T},
ie{l,...,M}, by
M
NPV(t) == E,; [Z D(t,T;) - Cash(Ty) |,

i=1

where

® 3s before, r(s) denotes the short rate at time s

m D(t,T) denotes the discount factor

T
D(t,T) = exp (/t r(s)ds)

m and the expectation is taken with respect to the risk neutral pricing measure and
the filtration F;, which encodes the market information available up to time ¢.

Unfortunately, we do not know D(t,T) at t. As suggested earlier in (1), there is a useful
relation between D(t,T') and the zero-coupon bond corresponding to r(s)

P, T)=E,D(¢,T)] = E; [exp (—/t r(s)ds)] .

By a change of numeraire to P(t,-) we obtain

M
NPV(t) = > P(t, T;)E[Cash(T})] , (11)

i=1
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where E:[-] denotes the expectation under the T;-forward measure associated with the
risk-free zero-coupon bond P(t,-) and the filtration F;.6

We can now use (11) to calculate the NPV if we know to which interest rate the short
rate r(s) corresponds. In [32], it is shown that if the transaction is

(@) uncollateralised with no counterparty credit risk then r(s) corresponds to the coun-
terparty’s funding rate.

(b) completely collateralised then r(s) corresponds to the collateral rate.

The first case is of rather theoretical nature, since in practice, uncollateralised transactions
usually involve counterparty credit risk. Note that if we are in the first case, then we
would again use Libor in the interbank sector, just as in the single-curve approach.

We will assume in the following that we are in the second case, i.e. that our contracts
are collateralised, as this is standard nowadays. For example, in 2014 around 97% of
non-cleared credit derivatives and 91% of non-cleared equity derivatives were already
using CSAs, see [17]. In this case it is reasonable to assume that the collateral rate is the
QIS rate as, again, this is market standard, see [12].

4.2 Basic Concept and Important Examples

In conclusion, in the multi-curve approach we first build one single zero-bond curve from
QIS rates. We continue to denote this zero-bond curve by P(¢,-) and will explain its
construction later in Section 4.3.1.

Apart from the zero-bond curve, we segment the interest rate market with respect to
the different tenor structures of its derivatives. We use in each partial market a separate
interest rate structure to value its IRDs. For instance, we use FRAs with 6m-tenor for the
first two years and afterwards Libor swaps with 6m-tenor to account for the forward
rates with ém-tenor. This will be illustrated in Section 4.3.2.

Assumption: The IRD market should be segmented according to the tenor of its
products.

Procedure: For pricing a linear IRD with tenor A, we

1. calculate the future cash flows with the forward rate curve of tenor A and

2. discount these future cash flows with a unique zero-bond curve.

Due to the importance of tenors in the multi-curve approach and for the sake of consis-
tency, we alter the notation of the simply compounded spot rate L(T — A, T) of (3) to
LA(T - A,T).

Definition 11. Consider a linear IRD with cash flows
Cash(T;) = a; + Bi - L™ (T4, T;)

where a;,3; € Rfori = 1,...,M and T} < ... < Ty with T; — T;_y = A for

6|n fact, this is how we defined the NPV earlier in Definition 7.

Multi-Curve Approach: One
Discount Curve and Distinct
Forward Curves
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j=2,..., M. With (11) we obtain

M
NPV(t) = > P(t,T;) - Ej {Cash(Ti)}

i=1
_ iP(LTi) . (ai + B E; [LA(Ti—l,Ti)}) .
=1

We set LA(t,T;_1,T;) = E! [LA(Ti_l,Ti)} and call the curve given by the mapping
T — LA(t, T — A, T) the A-fixing curve at time .

Remark. In the literature, one often defines the A-fixing curves using risky zero-bond
curves PA(t,-) by

1 PA(t,T;_4)
LA, Ti_1,T;) = 1),
( ’ ! ) T(Ti—lairi) < PA(tn)

This is motivated by (5). We then have all curves of interest, i.e. the zero-bond curve and
the different forward curves, in »zero-bond form«. Here in this white paper, we omit this
practice as it would not add any extra insights.

For valuing an IRD as in the above definition we need to know the specific A-fixing curve.
Therefore, we would like to discuss the value of a FRA:

Example 2. For the standard FRA, which we have introduced in Definition 6, the pay-
ment date is assumed to be T3, so at time T; we have the payoff

FRAua = FRAwalt, Tiy, Ti, N) i= Nr(Tioy, T) (K = AT, T))

where K is the FRA rate, N the nominal value and A = T, — T;_;. With (11), the NPV at
time ¢ is given by

NPVrRra

L, =P(t,T;) - E [NT(Ti,l,TZ-) (K - LA(TZ-,l,Ti)H

— P(,T)) 'NT(Ti—l,Ti)(K —E [LA(Ti_l,T,;)D .

Since K is chosen such that NPVgga,,, = 0 we get

LA T, T) = By LA(T, T)| = K (13)

Example 3. The actual FRA traded on the market, however, has payment date T;_; and
is discounted with the floating spot rate, i.e. at time T;_; we have the payoff

K — L(T;-1,T))

FRAmkt = FRAmkt(taTi—laTiaN) = NT(E_l,E)].‘i‘T(T L T)LA(T L T) .

Note that the discounting with the floating spot rate is not a modelling choice but spec-
ified in the contract itself. Mercurio shows in [25] that the NPV at time ¢ is given by

1 +K"T(/I7i,1,/1—7i)
1+ LA, Tio1, Ti)7(Tio1, Ty)

NPVpga,,.. = Pt,Tic1)N (

(Ol T) - 1))
where exp(C(t,T;—1)) is called »convexity adjustment« and depends on the model. He
further proves that under reasonable model assumptions and if the difference between
forward Libor rates and corresponding OIS rates remains fairly constant, which is usually
the case, then the value of C(t, T;_1) is negligibly small and we further have

NPVrra

mkt

~ NPVipa,,, = P(LT) - Nr(Tiy, T) (K - LA T, T)) - (14)

which again results in LA (¢, T;_1,T;) = K.

Multi-Curve Approach:
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Remark. Note that FRA contracts are quoted on the market in terms of the FRA equilib- Multi )

. . . . . ulti-Curve Approach: One
rium rates. They are also included into rates of futures, interest rate swaps and tenor basis  piscount Curve and Distinct
swaps. Therefore, the different FRA curves can be extracted from market quotations. Forward Curves

Example 4. To illustrate the use of Definition 11 we consider a 6m-Libor fixed for floating
swap over the term of two years. We will use the resulting pricing formula to construct
the ém-fixing curve in Section 4.3.2. For simplicity, we drop the usage of day count
conventions at this point and assume that the payments take place semi-annually. We
recommend to compare the following procedure to the one used in the first proof of
Lemma 3.1, where we applied the single-curve approach to price a standard FRA.

m The fixed party pays at time i - 6m the cash flows
Cash(i - 6m) = S(0,2y) - 6m = oy + B; - L™ ((i — 1) - 6m, i - 6m) ,
with the swap fixed rate S(0,2y), a; = S(0,2y) - 6m and 8; = 0. With (12) we get

the fixed leg
4

NPV(0) = S(0,2y) - 6m > P(0,i-6m) .

i=1
® The variable party pays at time 4 - 6m the cash flows
Cash(i- 6m) = L5™((i — 1) - 6m,i - 6m) - 6m = oy + B; - L (Ti_1,T3) ,

with a; = 0 and 8; = 6m. With (12) and the 6m-fixing curve we get the floating leg

NPV(0) = > P(0,i-6m) - 6m - L (0, (i — 1) - 6m, i - 6m) .

i=1

® So, in summary we get

5(0,29) = Zim PO 6m) - L7(0, (= 1) - 6m, - 6m)
2ot P(0,i-6m)

In general, i.e. with day count conventions and different fixed and floating payment
dates, we obtain

_ Z?:l P(O?ﬂ)T(ﬂ—laﬂ)LA(07ﬂ—lyﬁ)

5(0,T,,) Yo m(Tim1, T3)P(0,T;) 7

(15)

where T = {T1,...,T,} is the time structure of the fixed cash flowsand 74 = {T{,... . T» =
T} is the time structure of the floating cash flows with T4, = T2+ A, i=1,...,a—1.

3

4.3 Curve Construction

We start with the construction of the zero-bond curve from OIS rates in Section 4.3.1, as
this curve will be used to construct the forward curves in Section 4.3.2.

4.3.1 OIS Curve Bootstrapping

In the sequel we follow [20] and [9]. The starting point of the multi-curve approach is
always the construction of a zero-bond curve P(,-). We denote by
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m N the number of business days in a given period

m 7; the year fraction between the business day i and the next business day, for example
we normally have for i being a Friday =; = 3/(number of days in the specific year)

m REF; the reference rate published for business day 4 which is valid until the next busi-
ness day and usually published on business day i + 1.

The paid interest over this period is

N

[[+7 REF) —1.
i=1

Note that the final settlement of an OIS occurs one day after the maturity date of the OIS
due to the delay of publishing the reference rate for the maturity date, see [29].

A special feature of OIS rates is the quasi-static behaviour of reference rates between
Monetary Policy Meeting Dates. Another speciality is that there are often seasonality
effects observable at each quarter or end of the year, see Fig. 4.

We assume that the seasonality adjustment is built into the rates REF; by adding a spread
s; which can be obtained through historical data or through estimations. By

T = Tohort = {0 ="to,t1,...,tn} and ry:={rey,...,re }

we denote critical dates of the short part of the curve, such as meeting dates and regular
tenor OIS dates, and their corresponding quoted rates for these periods. We further as-
sume that these forward starting OIS rates are quoted from the spot date to the meeting
date. Clarke suggests in [8] that this short term period lasts from 3 to 6 months. Our
aim is to determine the daily rates REF;. The identity

Nto,tl
Tey e T(t(),tl) = H (1 +7’i . (REFZ -+ Sz)) -1

i=1

reveals the relation of the rates 7, and r;, where we have the fixed leg on the left hand
side and the floating leg on the right hand side and where Ny, , ;, denotes the number
of business days in the period from ¢;_; to t;. Because of the quasi-static behaviour of
the rates r; between meeting days we only consider constant rates r; ;41 between day ¢
and 7 + 1 and get

Nig,ty

re -7t ) = [ (1 47 (REFey 4, + si)) —1.
=1

Hence, we can now solve for REF;, ;. With the calculated REF;, ;, we then obtain

Multi-Curve Approach: One
Discount Curve and Distinct
Forward Curves

Fig. 4: Daily effective Federal
Funds Rate; source: St. Louis Fed
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REFtlat2 thrOUgh Multi-Curve Approach: One

N N Discount Curve and Distinct
to,t1 t1,t2

Forward Curves
Ty T(to,t1) = H (1 —+ 7 (REFto,tl + S,)) . H (1 —+ 7 (REFtl,tg + SJ) -1

i=1 i=t141

and stress that ¢ = ¢; + 1 refers to the first business day after business day ¢;.

This way we can obtain all rates REF;, ;,. .
In the middle part of the curve, from the end ¢,, of the short part up to one year, normal
interpolation of OIS rates can be used. Another possibility is to continue using the daily
discount process as done in the short dated part, but this only has minimal benefits, as
stated in [9].

The long region starts after one year, where OIS pays annual interest. Here we can
again apply the classical single-curve bootstrapping technique for 1 < T' as described in
Section 3.1, since this part can be assumed to show no step function behaviour due to
the greater uncertainty of the responsible committees’ actions over longer horizons.

If we need a zero-bond curve for values ¢ greater than the maturity of the longest OIS
we could

(@) assume that the spread between the QOIS fixed rates and the Libor swap fixed rates
is constant for all maturities after the longest OIS maturity or

(b) use basis swaps where 3m-Libor is exchanged for the average OIS reference rate
plus a spread.

It is important to also acknowledge the step function characteristics of the short-dated
region with a suitable interpolation scheme and to choose the interpolation scheme of
preference in the subsequent part.

We mentioned earlier that at each quarter or the end of the year, extreme seasonality ef-
fects are observable. In the literature this is commonly referred to as the »turn-of-the-year
(TOY) effect«. The bootstrapping can be sensitive to this effect and it is recommended to
first exclude it from the data and to model it on top of the bootstrapped curve after the
bootstrapping has been completed. We refer to [13], where Ametrano and Bianchetti
have outlined such a possible approach.

4.3.2 Forward Curves Bootstrapping

In the multi-curve approach, the unknown forward rate curves for the different tenors
must be bootstrapped relative to the known zero-bond curve P(¢,-), which was priorly
bootstrapped using OIS rates. In the following, we denote the forward rate curve for
the tenor A by A-curve. In the single currency setting, we are usually interested in
the standard tenors 1m, 3m, 6m and 12m. If we have set up these curves there exist
techniques to obtain, for instance, the 2m-curve, by interpolating between the Tm-and
the 3m-curve. However, we will not cover them in this white paper.

The first step in constructing forward curves is a careful selection of the corresponding
bootstrapping instruments. Contemplable instruments may overlap one another in some
areas. Hence, we select those that are least overlapping and give preference to the more
liquid ones, i.e. those with tighter bid-ask spreads.

The reference date for all the EUR market bootstrapping instruments — except for overnight
and tomorrow-next deposit contracts — is Ty, with Ty = spot date. Once the A-curve at
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Tp is available, the corresponding A-curve at tg, with ¢y = today, can be obtained using . )

. . . g Multi-Curve Approach: One
the discount factor between these two dates implied by overnight and tomorrow-next  piscount Curve and Distinct
deposits. Forward Curves

We discuss here the construction of the 6m-curve, because this segment is the most
liquid in the EUR market. For this purpose, we use the instruments specified in Fig. 5.7

Index  Type Duration
1 FRA rate 0x6

FRA rate 1x7

FRA rate 2x8
19 FRA rate 18x24
20 6m-Swap fixed rate 3 years
21 6m-Swap fixed rate 4 years
46 6m-Swap fixed rate 29 years Fig. 5: Input rates for bootstrap-

. ping the 6m-curve after the finan-

47 6m-Swap fixed rate 30 years cial crisis

We have already derived the valuation formulas for FRAs and swaps, given by (14) and
(15), respectively. With these we will now, similar to Section 3.1, bootstrap grid points
of the fixing curve L5 (t,T — 6m,T) from the above N rates. As before, different
calculations apply:

m ForT <2y
As we have in (13)
LA Ty, Ty) = Ei [LA(T,»,l,Ti)] - K,
where K is the corresponding FRA rate, we can just read the values for L2 (¢, T;_1, T;)
»off the screenx.
m ForT > 3y:

In the case of swaps we obtain from (15)

S(0,T,) S0, 7(Ty_1, T;) P(0, T3)
P(0,T5)7(Tr—1,Th)
S PO, T (Tiy, Ti) L™ (0, Ty 1, T)
B P(0,T7)7(Tr_1,Ts)

L0, Tr 1, T5) =

)

where T = {T1,...,T,} is the time structure of the fixed cash flows and ;[6’” =
{Tfm™, ..., T8™ = T,} is the time structure of the floating cash flows with 797 =

5™ +6m,i=1,...,n—1andn =3y, ...,30y.

In practice, since the market's fixed leg frequency is annual and the floating leg fre-
guency is given by the underlying Libor rate tenor A < 1y, we might have to use
interpolation during the bootstrap procedure, compare the end of Section 3.1.

"Note that we are in general not allowed to simply use 6m-deposits, as they are neither Libor-indexed nor
collateralised.
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For setting up the other curves usually the following instruments are used: Multi-Curve Approach: One

. . Discount Curve and Distinct
® Im-curve: Monthly swaps and basis swap quotes against other swap rates Forward Curves

m 3m-curve: FRA rates, futures and basis swap quotes against 6m-swap rates

® 12m-curve: 12x24 FRA and basis swap quotes against the 3m-curve or 6m-curve

In general, one possibility for calculating the A-curve is to add the corresponding tenor
basis spread curve, i.e. the OIS-A-spread curve, to the zero-bond curve obtained in the
last section. If this curve is not available one can first add the OIS-x-spread curve, with
the highest possible 2z < A and then add the x-y-spread curve with the highest possible
y such that z + y < A and so on ...These constructed instruments are the so-called
»synthetic deposits« and are explained in more detail in [31].

After having constructed the different Libor forward rates, we can again get the whole
curve of interest by applying interpolation methods, compare the end of Section 3.1.
Using interpolation techniques for estimating the different A-curves is also known as the
»exact fit approach«.

Instead of the exact fit approach, which usually results in an overfitted curve, one can also
apply a so-called »best fit approach«, which returns a more realistic curve. The most
popular examples of best fit approaches are the Nelson-Siegel model and its extension,
the Svensson model. Best fit approaches are used by most central banks, particularly
because their estimations are better suited for international comparison compared to the
usage of spline interpolation, as they make use of parameters and spline interpolation
does not. The Svensson model involves six parameters — two more than the Nelson-Siegel
model — which allows for a second hump in the curve. We want to find parameters such
that the theoretical prices are as close as possible to the bootstrapped prices. For this
purpose the ordinary least squares method is typically used. In summary, both mod-
els are not extremely complex, fit the data well and also work with a small amount of
data points, see [33] for more information and an introduction to the R package termstrc.

Remark. Note that in general we have
LA(To1,Tn) # L3 (Toe1, Toe1, T

compare (7) in the single-curve approach.

See [13] for the pricing formulas of more financial instruments, such as basis swaps and
futures, and for further details. They used and recommend the open-source QuantLib
framework to obtain numerical results.

4.4 Validation of the Constructed Curves

Before applying the constructed curves to real problems we should always carry out some
validation. As pointed out in [20], there are four major steps that should be carried out:

1. Check if

(@) in case of an exact fit approach, the built curves correctly reprice the market
instruments that were used as an input for the curve construction.

(b) in case of a best fit approach, the built curves reprice the market instruments that
were used as an input for the curve construction with a predetermined precision.
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2. Check if the built curves correctly price the market instruments that were not used as
an input for the curve construction.

3. Check if the market rates with which the trading desk works are recovered exactly.

4. Check if the generated forward rates are sufficiently smooth. Jumps could be caused
by the usage of a non-optimal interpolation scheme during the bootstrapping ap-
proach itself.

Likewise, the authors of [13] recommend that any good bootstrapping system should
provide a real-time snapshot of yield curve shapes and a real-time pricer of market instru-
ments for each constructed curve. As a side note, they also show that our bootstrapping
framework is robust enough to be able to deal with negative market rates.

Multi-Curve Approach:

One

Discount Curve and Distinct

Forward Curves
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5 Generalisation: Collateral in a Foreign Currency Generalisation: Collateral in a

Foreign Currency

Some collateral agreements restrict the number of currencies in which the collateral can
be posted. As explained in the previous section, collateralised trades should be dis-
counted using the collateral rate, no matter what the currency of the underlying trans-
action is. In [22], the authors have found that the »cheapest-to deliver« option can
significantly change the fair value of a trade when a contract allows multiple currencies
as eligible collateral as well as its free replacement. Hence, it is important to have a closer
look at this important issue.

From now onwards we follow [5], where it is shown how zero-coupon bond prices in a
foreign currency USD, denoted by PY*P(¢,T'), can be obtained through the zero-coupon
bond prices in our local currency EUR, denoted by P(t,T). The resulting curve PYP(¢, )
can then be used to value payments in USD in a contract collateralised in EUR.

We enter

1. a cross-currency swap (CCS) and therefore exchange at time T;,: € {1, ..., N}, float-
ing payments plus a basis spread bs; in our local currency EUR for floating payments
in the foreign currency USD. It holds that A =T; — T;_1,i=2,...,N.

2. afixed for floating interest rate swap in the foreign currency to exchange exactly the
floating payments in the foreign currency for fixed payments in the foreign currency.
This we do, to be left with only one unknown variable, namely the foreign discount
factors PYP(¢,T).

Assuming coinciding payment dates and day count conventions for the two swaps, the
following system of equations has to be fulfilled:

n

P(0,T;) + > P(0,T;)(L*(0,Ti—1, T3) + bs;) - 7(Ti—1, Th)

=1

=PUP(0,T,) + ¢ - Y _PYP(0.T3) - 7(Ti-1, T)
=1
for 1 < n < N, where ¢, denotes the par spread of the USD-IRS. The left hand side

of the equation is the part that we pay, whereas the right hand side is the part that we
receive. By bootstrapping these equations we get

P(0,T,) + > iy PO, T)(LA(0,T5-1, T;) + bsi) - 7(Ti—1, T3)
1+c¢,- T(Tn_l,Tn)
en - S PYR(0, ) - 7 (Tioy, T)
1 +Cn 'T(Tn,th) ’

PUSD(()’ Tn) _

Remark. Note that we implicitly assumed that the CCS and the IRS that we enter are
both also collateralised in our local currency EUR. However, this is usually not the case
but seems unavoidable, as pointed out in [5].
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6 Overview: Extensions of Interest Rate Models to the Overview: .
verview: Extensions of Inter-

Multi-Curve World est Rate Models to the Multi-
Curve World

So far, we have seen the progress from the single-curve approach to the multi-curve
approach in the aftermath of the financial crisis. In the most general new framework we
have different zero-bond curves for different collateral currencies and collateral rates and
different forward Libor curves corresponding to different market tenors. This suffices to
price linear IRDs, such as FRAs, futures and IRSs.

For non-linear IRDs that have more complex payouts and whose price has to be calcu-
lated by simulation, such as bond options, caplets and swaptions, it is necessary to have
a dynamic model of the interest rate curve, just like in the single-curve world. There exist
two types of models:

® Models of reduced form, where credit and liquidity risks are modelled.

®m Models of structured form, where the interest rates and relevant spreads are mod-
elled directly.

In practice, models of the latter type are used. These are also referred to as »stochas-
tic spread models«. The downside of them is, however, that they do not help us to
understand the reasons for the resulting spreads.

Until the financial crisis, there were three main families of models for interest rate dy-
namics, each providing a different solution based on different choices of the underlying
modelling variables. In the following, we refer to [24] and provide a brief overview of
these different families and link to relevant papers that have extended each of them to
the multi-curve world:

1. Short-rate models: This family of models was first introduced in 1977 by Vasicek
and only models — as the name implies — the instantaneous short rate. In the single-
curve context, all interest rates can be seen as functions of bonds and every bond can
be interpreted as the expectation of a specific discount factor, which is itself defined
as an integral over the short rate, see Definition 1. After establishing a numerical
representation for the short rate we get analytical solutions for bond prices and can
price any IRD of interest.

Extension: In [19], Kenyon extends short-rate models to the multi-curve world. This
class of models can only be used for pricing IRDs that can be described by bonds. It
is shown that many useful analytical results can be obtained in this setting, such as
swaption pricing and fitting the smile.

2. Heath-Jarrow-Morton (HJM) models: Introduced by Heath, Jarrow and Morton in
1992, this family models instantaneous forward rates which have perfect correlation
along the yield curve. No drift estimation is needed, since drifts of the no-arbitrage
evolution of certain variables are expressed as functions of their volatilities and the
correlations among themselves. While short-rate models only model the dynamics of
a point on the forward rate curve, namely the short rate, HIM-type models capture
the full dynamics of the entire curve.

Extension: In [28], Moreni and Pallavicini recognise that an extension of the HIM-
family has the same limitations as in the case of short-rate models. Hence, they model
discrete tenor forward rates instead of the instantaneous rates. In [35], Torrealba
models different variables and uses theoretical bonds to describe rates. Thus, these
two approaches treat the same problems in a fundamentally different way.
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3. Libor market models: With these models real-world discrete-tenor rates are mod- Overview: .

. . . . verview: Extensions of Inter-
elled instead of instantaneous variables, as the above two model families do. More  ast Rate Models to the Multi-
specifically, they model forward rates, which are directly observable in the market and  Curve World
whose volatilities are directly linked to traded contracts. It is especially useful for very
complex IRDs, such as autocaps, Bermudan swaptions, constant maturity swaps and
zero coupon swaptions. In fact, we have already seen the link of these rates to bonds
in Lemma 3.1.

Extension: This family was the first to be extended to the multi-curve market by Mer-
curio in 2009. Also in this case, we already came across a central theoretical result in
Example 2, namely that a forward rate can be written as the expectation of the future
Libor rate paid by the FRA under the measure associated with the risk-free discounting
bond, which was shown by Mercurio in [25]. His approach guarantees that FRA rates
are higher than risk-free rates by first modelling the risk-free rates and then modelling
the non-negative spread of them to the FRA rates.

In more detail:
m Consider a time structure 72 = {T§,...,T5} and use the OIS bonds to define
the OIS forward rate
1 P(t,T;—1)
FSs(t, Ti1, Ti) = ’ -1},
OIS(a 15 ) T(Ti—lvTi) ( P(t,Ti)

compare Lemma 3.1.

m The spread S2(t,T;_1,T;) between the FRA rate L2(t,T;_1,T;) and the OIS for-
ward rate F5;5(t, Ti—1,T;) is given by

SA(t, Ty, Ty) = LA(t, Ty—1,T3) — FS15(t, Ti—1,Ty) .

Since by definition, the FRA rates and OIS forward rates are martingales with respect
to the measure associated with the risk-free discounting bond, the same is true for
their difference.

m Model the joint evolution of F4, (¢, T;_1,T;) and the non-negative spread
SA(t,Tio1, T;).

In [1], Mercurio’s extension is discussed in the case of the Heston stochastic volatility
model with displaced diffusion. The paper particularly covers different approaches
to swaption pricing based on different modelling approaches and provides details on
calibration and delta hedging.
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7 A Note on Libor: Its Rise, Scandal, Fall and Replacement AN o
ote on Libor: Its Rise, Scan-

dal, Fall and Replacement

The London Interbank Offered Rate (Libor) is the trimmed average of interest rates esti-
mated by each of the leading banks in London that they would be charged if they had
to borrow unsecured funds in reasonable market size from one another. Libor rates were
officially fixed for the first time on 1st January 1986 by the British Bankers’ Association
(BBA), an industry trade group, and were assumed to be approximately riskless until the
financial crisis. The BBA intended to create a uniform benchmark for banks to wipe
out the necessity of constantly haggling over the interest rates that would be charged
for different types of loans. The key concept is that Libor is based upon the offered rate
and not the bid rate, i.e. submissions are based upon the lowest perceived rate that a
bank could — not would — go into the interbank money market and obtain funding, for
a specific currency and maturity. Today, it is calculated daily for five currencies (CHF, EUR,
GBP, JPY, USD), each having seven different tenors (1d, Tw, 1m, 2m, 3m, 6m, 12m). As
a consequence, the rates are not necessarily based on actual transactions, since not
all banks require funds in marketable size each day in each of the above currencies and
maturities.

It has become a foundation of global finance, being the primary worldwide bench-
mark for short-term interest rates and hence is sometimes referred to as the »world's
most important number«. Many credit card contracts, financial derivatives, mortgages,
student loans and other financial products rely on Libor as a reference rate and it thereby
affects consumers and financial markets worldwide. Since most derivatives are not traded
on public exchanges, it is hard to say exactly how vast Libor’s reach is, but it is estimated
that at least USD 350 trillion of outstanding financial contracts worldwide are based on
the benchmark, see [16]. This is nearly five times the value of the gross world product of
2016, see [36].

Similar reference rates set by the private sector are, for instance, the Euro Interbank
Offered Rate (Euribor), the Singapore Interbank Offered Rate (Sibor) and the Tokyo Inter-
bank Offered Rate (Tibor).

During the Libor scandal of 2011 it was investigated that the rates have been con-
sciously manipulated by many of the contributing banks. The two main motivations for
a bank to submit inaccurate rates were essentially:

1. Making the bank look healthier than it really was during the financial crisis.

2. Benefiting the financial positions of the bank’s traders that bet on the day’s benchmark
and thereby unfairly raising the bank’s profits.

It turned out that similar benchmarks like Libor, including Euribor, Sibor and Tibor, have
also been manipulated. The damage for the global economy was estimated to be in the
billions.

In the aftermath, several significant reforms were introduced to the affected rates. In the
case of Libor, these were:

® |n early 2014, a new administrator, Intercontinental Exchange (ICE), took over.

®m The number of rates were reduced from 150 to 35 and the calculation was altered so
that they are more robustly based on underlying transactions.

m New UK laws have been passed that criminalise the manipulation of relevant bench-
marks and brought Libor under UK regulatory oversight by the Financial Conduct Au-
thority (FCA).
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® Maybe most importantly, individual bank’s submissions to Libor are now being pub-
lished after a period of three months, so that there is no incentive to make inaccurate
statements with the purpose to appear overly healthy. The submissions are of course
still available in real-time to the administrators and regulators to calculate the daily
rates and for surveillance purposes.

In 2014, Zimmermann welcomes these changes but recommends in Chapter 7 of [10]
to examine the option of replacing private benchmark rates like Libor and Euribor by
alternative benchmarks based on central bank key rates and emphasizes that the reform
undertaken due to the Libor scandal

»falls short of resolving the fundamental conflict of interests that arises from
a situation in which staff members, who are all on the payroll of the same
institution, and who see each other over lunch and who play golf with each
other, are in charge both of contributing to the setting of a transparent and
objective benchmark, thus providing a public service to the financial system,
and of making money by betting on the evolution of the very same interest
rates. In hindsight, the only thing that really is surprising in the entire Libor
scandal is that anybody ever believed that the existing system would not be
rigged.«

On 27th July 2017, Andrew Bailey, CEO of the FCA, announced the end of Libor. It
is going to be phased out in all currencies and tenors by the end of 2021, see [2]. The
main reason for this radical step is that the unsecured lending market on which Libor
is based is no longer sufficiently active. Bailey mentioned one example, where there
were only fifteen transactions in the whole of 2016 for a specific currency and lending
period. This means that on most days the rate is set based on expert opinion alone. Until
2021, alternative interest rate benchmarks have to be found and a strategy for a smooth
transition has to be worked out. Fortunately, all current panel banks agreed voluntarily
to continue contributing to Libor during this period.

One thing is certain: The new benchmarks that will be chosen to replace Libor will be
calculated based on actual transactions and will thereby reflect actual, not theoretical,
borrowing costs. It is possible that algorithms will be involved in the computations in
accordance with the increasingly computerised and robotic nature of the financial system.
The FCA has suggested that a reformed SONIA could be considered as an alternative.
Likewise in Switzerland, the National Working Group on Swiss Franc Reference Rates has
proposed the Swiss Average Rate Overnight (SARON). The European Central Bank (ECB)
has also announced the plan to create a new benchmark. In early April of 2018, the New
York Fed launched the Secured Overnight Financing Rate (SOFR) set at 1.80 percent,
which potentially is supposed to replace Libor. SOFR is based on the overnight treasury
repurchase agreement market, which trades around USD 800 billion in volume daily.

After suitable benchmarks have been found, the important question arises how to deal
with legacy financial contracts whose settlements are linked to Libor. It is possible, but
not certain at all, that ICE will continue to issue Libor. In [11], an auction-and-protocol
process is discussed to convert a Libor-based contract to another reference rate.

There is plenty of work to be done, yet we shall never forget:

»Success is a journey, not a destination. «

— Arthur Ashe (1943-1993)

A Note on Libor: Its Rise, Scan-
dal, Fall and Replacement
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A Appendix Appendix

A.1 Conventions

Throughout this document, the following conventions hold:
B Weassumet <T.

® We assume that the considered IRDs only have one underlying interest rate and that
this rate is Libor.

m \We assume the Actual/360 day count convention. It is determined by the factor of the

day count function 7(¢,T) := 5tsDays(t, T), i.e. one year is assumed to consist of 360

days. For further examples of day count functions see [29].

Day count functions are typically monotonically increasing with increasing time inter-
vals and additive, i.e.

T(Tl,T2)+T(T2,T3):T(Tl,Tg), T1 STQSTS

m \We assume that the collateral rate of a collateralised contract is an OIS rate.

A.2 Notation
Notation Meaning
D(t,T) Discount factor at time ¢ for time period [t, T
L(t,T) = LA(t,T) Libor rate at time ¢ for time period [t, T], where A =T — ¢
L(t,T;-1,T;) FRA rate at time ¢ for time period [T;_1, 7]
LA(t,-— A, ") A-fixing curve at time ¢
P(t,T) Zero-coupon bond price at time ¢ for time period [¢, T
S(t,T) Swap fixed rate at time ¢ for time period [¢, T
7(t, ") Day count function at time ¢ (see annotation above)
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