DigiLaugBeh: Digitale Auslegung von Leichtbaukomponenten

Marc Dillmann, Matthias Kabel, Maxime Krier Abteilung »Strömungs- und Materialsimulation« Alumni-Netzwerktreffen 13.12.2024

BOSCH

in Industry and Craft at **RWTH Aachen University**

Supported by:

Federal Ministry for Economic Affairs and Climate Action

Universität Stuttgart Institut für Akustik und Bauphysik

on the basis of a decision by the German Bundestag

Das Projekt DigiLaugBeh – Auslegung einer Leichtbaukomponente

Laugenbehälter einer Waschmaschine, Energielabel der EU und CT-Scan von PP-LGF30

Die Ansprüche

- Bestmögliche Energieeffizienz
- Langlebigkeit und niedriger Verschleiß
- Nachhaltigkeit eingesetzter Materialien

Die Vision

- Einsatz langfaserverstärker Kunststoffe
 - Erhöhte Steifigkeit und Festigkeit
 - Verbesserte Ökobilanz durch Einsatz von Rezyklaten
 - Gewichts- und Materialreduktion durch Schäumen

Die Umsetzung

- Digitale Erstellung von Materialkarten f
 ür das Erm
 üdungsverhalten von PP-LGF30
- Bauteiloptimierung der Rippenstruktur inklusive Lebenszyklusanalyse

Das Projekt DigiLaugBeh – Auslegung einer Leichtbaukomponente

Innerhalb von sieben Jahren nach Projektende spart Projektpartner Bosch...

... 3.780 t Material

... 23.770 t CO₂-Äquivalente Treibhausgas

... das entspricht der Jahresemission eines deutschen Großdorfes mit 2.200 Einwohnern

Einsparungspotentiale nach Forschung des IABP, Universität Stuttgart

Die Ansprüche

- Bestmögliche Energieeffizienz
- Langlebigkeit und niedriger Verschleiß
- Nachhaltigkeit eingesetzter Materialien

Die Vision

- Einsatz langfaserverstärker Kunststoffe
 - Erhöhte Steifigkeit und Festigkeit
 - Verbesserte Ökobilanz durch Einsatz von Rezyklaten
 - Gewichts- und Materialreduktion durch Schäumen

Die Umsetzung

- Digitale Erstellung von Materialkarten f
 ür das Erm
 üdungsverhalten von PP-LGF30
- Bauteiloptimierung der Rippenstruktur inklusive Lebenszyklusanalyse

Multiskalen-Framework für den Digitalen Zwilling

Framework basierend auf Fraunhofer ITWM Promotionen [Koebler et al. 2021], [Magino et al. 2022]

RVE Generierung

- Erzeugung periodischer Faserstrukturen
- Diskretisierung von Strukturparametern

Mikroskalensimulation

- Ermüdungsverhalten von RVEs
- Schadensentwicklung unter verschiedenen Lastrichtungen
- MOR durch POD
- Erzeugung einer Materialdatenbank

Spritzgusssimulation

- Lokale Vorhersage von u.a.
 - Faserorientierung
 - Faserkrümmung
 - Porengehalt

Bauteilsimulation

- Ermüdungsverhalten unter mechanischer Last
- Simulation von 10⁶-10⁷
- Lastzyklen
- Lokalisierung von Schäden und Optimierung

Mikroskalen-Simulation von langfaserverstärkten Kunststoffen

RVE Generierung mit Sequential-Addition-and-Migration Methode [Schneider, 2022]

Mikroskalen-Simulation von langfaserverstärkten Kunststoffen

Ermüdungsmodell im log-Zyklenraum [Magino et al. 2022]

Ermüdungsmodell

- Fasern linear elastisch
- Freie Energie für Matrix

$$\omega(\boldsymbol{\varepsilon}, d) = \frac{1}{2(1+d)} \boldsymbol{\varepsilon}: \mathbb{C}: \boldsymbol{\varepsilon}$$

- Dehnungstensor $\pmb{\varepsilon}$
- Skalare Schadensvariable $d \ge 0$
- Dissipations-Potential

$$\phi(d') = \frac{1}{2\alpha} (d')^2$$

- »Schadensviskosität« α
- Ableitung im log-Zyklenraum d'

Fitting des dynamischen E-Moduls für Matrixmaterial mit Messdaten

Steifigkeitsreduktion in RVE nach 10⁷ Zykeln

Makroskalen-Simulation von langfaserverstärkten Kunststoffen

Mapping von Strukturparametern aus Spritzguss-Simulation

Fraunhofer

ITWM

Seite 8 22.01.2025 © Fraunhofer ITWM

8 CPUs

Restricted

Cool(FEM)+FILL+PACK+Warp, inkl. der Optionen Fiber Breakage und Interaction Fiber Orientation with Viscosity

Fraunhofer

Vielen Dank für Ihre Aufmerksamkeit und frohe Weihnachten!

in Industry and Craft at **RWTH Aachen University**

Supported by:

Federal Ministry for Economic Affairs and Climate Action

Universität Stuttgart Institut für Akustik und Bauphysik University of Stuttgart Institute for Sanitary Engineering, Water Quality and Solid Waste Management

on the basis of a decision by the German Bundestag

Mikroskalen-Simulation von langfaserverstärkten Kunststoffen

Erweiterung auf geschäumtes Material durch effektive Steifigkeit für Matrix mit Poren

Effektive Steifigkeit für Matrix mit Poren

- SIMP Ansatz aus Topologieoptimierung
- Effektives E-Modul gegeben durch

 $E_{\text{SIMP}}(z) = \left(1 - \phi_{\text{Poren}}^{\text{lokal}}(z)\right)^3 \left(1 + k_{\text{fit}}\phi_{\text{Poren}}^{\text{global}}\right) E_{\text{Matrix}}$

Fitting durch Vergleich mit Simulationen mit vollaufgelösten Poren

Makroskalen-Simulation von langfaserverstärkten Kunststoffen

Modell-Kalibrierung mithilfe von Experimentdaten von gekerbten Prüfkörpern

Modell-Kalibrierung

0.95

0.9

0.85

2

 $E_{\rm dyn}/E_{\rm dyn}(0)$

65°

- Bestimmung des Schädigungsparameters α
- Bestimmung eines Versagenskriteriums auf Bauteilskala
- Modell erlaubt a-posteriori Fitting beider Größen

Geometrie A, 0°-orientiert, Spannungsverhältnis R = 0

4.5

 $\log_{10}(N)$

4

5

5.5

Geometrie A, 90°-orientiert, Spannungsverhältnis R = 0

3

3.5

2.5